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0 Notation

• T(n)
The time complexity for input size n.

• big O
Intuitive understanding: If a = O(b), a ≤ b
More specific, see https://en.wikipedia.org/wiki/Big_O_notation

• Ω
Intuitive understanding: If a = Ω(b), a ≥ b
More specific, see https://en.wikipedia.org/wiki/Big_Omega_function

1 Warm-up

We know the average time complexity for quick sort(https://en.wikipedia.org/
wiki/Quicksort) is O(nlogn). And merge sort can achieve O(nlogn) in the worst case.
O(nlogn) is the upper bound, but what is the lower bound?

From the following discussion, we can find that time complexity’s lower bound for
sort algorithms (based on comparison) in the worst case is also Ω(nlogn)! For each of
these algorithm based on comparison (quick sort, merge sort...), we can produce a
sequence of n input numbers that causes the algorithm to run in Ω(nlogn)
time.

However, it doesn’t say lower bound for sorting algorithm is Ω(nlogn). See a counter
example: counting sort https://en.wikipedia.org/wiki/Counting_sort for more if
interested.
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2 Compute Lower Bound for Comparison Sorting

Proof. For each of these algorithms based on comparison (quick sort, merge sort...), we
can produce a sequence of n input numbers that causes the algorithm to run in Ω(nlogn)
time.

1. There are n! permutations for n numbers (assume n numbers are different).

Example:
Input:
a1 a2 a3
Output:
a1 a2 a3
a1 a3 a2
a2 a1 a3
a2 a3 a1
a3 a1 a2
a3 a2 a1
n = 3, and result have 3! = 6 permutations

That is, to sort n numbers, the sorted results will have n! possibilities. In other
words, the possible solution set’s size is n!.
For the above situation, the possible solution set is {(a1, a2, a3), (a1, a3, a2), (a2, a1, a3),
(a2, a3, a1), (a3, a1, a2), (a3, a2, a1)}. And |{(a1, a2, a3), (a1, a3, a2), (a2, a1, a3), (a2, a3, a1),
(a3, a1, a2), (a3, a2, a1)}| = n!

2. Each comparison(ai, aj) splits the solution set into two part. part1: ai > aj, part2:
ai ≤ aj.

Example:
Input:
Using the above example. We pick two number(a1, a2) to compare them.

• If a1 > a2, then our updated solution set will be {(a1, a2, a3), (a1, a3, a2), (a3, a1, a2)}.
• Otherwise (a1 ≤ a2), then our updated solution set will be {(a2, a1, a3), (a2, a3, a1),

(a3, a2, a1)}.

3. We continue choosing two number, comparing it and updating solution set until
the solution set has only one item. Then the only item is the sorted result. And
we count how many comparisons/cuts are needed.
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We want to prove that ”For each of these algorithms based on comparison (quick
sort, merge sort...), we can produce a sequence of n input numbers that causes the
algorithm to run in Ω(nlogn) time.”

So, we let the adversary be the worst sequence of n input numbers in the above
context. That is, an adversary is the input data which makes the worst case. For insert
sort, the adversary is a decreasing sequence-(9 8 7 5 4). In this case, insert sort will
cost n2 time. For an increasing sequence-(4 5 7 8 9), insert sort will cost only n time.

Idea:
For comparison based sorting:

• What our designed smart sorting algorithm does is:
Choose two number for comparison, and split the whole solution set into two smaller
solution sets part1, part2. (part1 + part2 = the whole solution set)

• What the evil adversary does is:
Let the updated solution set be the large one from part1 and part2.

Example:
Suppose the current solution set is {(a1, a2, a3), (a1, a3, a2), (a3, a1, a2)}.

• What our designed smart sorting algorithm does is:
choose to compare a2, a3.

• What the evil adversary does is:
The evil adversary can control the input data because it is the input data itself.
The evil adversary thinks that if a2 > a3, the updated solution set will have only
item {(a1, a2, a3)}, oh, no!. But if a2 ≤ a3, then the updated solution set will have
two item {(a1, a3, a2), (a3, a1, a2)} left.
Of course, the adversary will let a2 ≤ a3, because it makes the worst case.

Now, count how many comparison/cuts needed:

1. The solution set’s size is n!.

2. Carefully choose two numbers(ai, aj), so that they will give equal split.
Because the adversary will choose the large one, so an equal split is the best choice.
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3. Since every comparison will cut the solution at most half, then needed cuts at least
are log2(|The whole solution set|) = log2(n!) ≥ nlogn.

Let k be the needed cuts, then |n!|
2k
<= 1, then k ≥ log2(n!)

Using Stirling’s approximation n! ≈
√

2πn
(
n
e

)n
, log2(n!) ≥ log2(

(
n
e

)n
) = nlog2n−

nlog2e = Ω(nlogn)
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3 More: Game Tree Model

Let’s play a game, see Figure 1. The rules are followings:

• The current node is the root node.

• Two players (player1, player2) play in turn. Each player chooses a children node
from the current node. And the current node updates to the children node.

• If the current node is a leaf node, then the game finishes. The player1’ score is the
leaf node’s number. And the player2’ score is (10 - leaf node’s number).

• Player1 plays first.

So, the player1 wants to max the result value, but the player2 wants to the min the result
value, and the player1 wants min the result value...

Figure 1: Game tree

So, one question comes out. How to do a choice for player1 and player2.

1. First number all nodes as node1,node2,..., nodem

2. Define two functions C(node), V(node).
C(node) is designed for player1. It means the maximum value which can get from
the node.
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V(node) is designed for player2. It means the minimum value which can get from
the node.

3. C(nodei) = max(V(nodei-child1), V(nodei-child2), ... V(nodei-childk1)); V(nodei)
= min(C(nodei-child1), C(nodei-child2), ... C(nodei-childk2))

4. Using dynamic programming, we can calculate answer bottom-up.

Let’s go back to sorting based on comparison.

Figure 2: Game tree for sorting based on comparison

Every inner node(all node except leaf node) is a comparison between two number.
Every leaf node is a possible sorting result.

Example

Figure 3: An inner node

At this node, compare a1 and a2. If a1 ≤ a2, then choose the left branch, else choose
the right branch.
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Figure 4: A leaf node

This is a leaf node, at this node the solution set have only one item (1,2,3).

Some conclusion:

• There are n! leaf nodes.
Since every leaf node is a possible result for sorting problem. Besides, at every
inner node, the solution set is divided into two disjoint smaller solution sets. One
part is ai > aj, the other part is ai ≤ aj. So the number of leaf nodes equals to the
size of solution set. Since the size of solution set is n!. Thus, the number of leaf
nodes are n!.

• The worst case time complexity equals to the height of the tree.
Since inside inner node, there is a comparison. Then for an input number sequence,
the number of comparisons equals to the length of the path it passes.

Let the longest path as path1, the length of the path1 is length1,and the leaf node
along the path is node1. Then we choose data corresponding to the leaf node node1
as the input data. Then we can let the algorithm need length1 comparisons. And
the length of longest path equals to the height of the tree. So in the worst case,
the time complexity equals the height of the tree.

• The height of the tree = Ω(nlogn), where n is the size of the input numbers.
Since a binary tree of height h has no more than 2h leaves, we have

n! ≤ 2h

Then,
h ≥ log(n!) = Ω(nlogn)

So, the worst case time complexity is Ω(nlogn)

Since, we proved that the worst case time complexity for deterministic comparison sorting
is Ω(nlogn). Here, we want show that the average time complexity for deterministic
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comparison sorting is also Ω(nlogn).
If the tree is completely balanced, then each leaf is at depth log2(n!) and we are done. So,
what we want to do is to show unbalanced tree has no less average depth. This
is not too hard to see: given some unbalanced tree, we take two sibling leaves at largest
depth and move them to be children of the leaf of smallest depth. Since any unbalanced
tree can be modified to have a smaller average depth, such a tree cannot be one that
minimizes average depth, and therefore the tree of smallest average depth must in fact
be balanced.

Note

• It’s up to the algorithm to do its split.
In other words, what our designed smart sorting algorithm does is:
choosing two number for comparison, split the whole solution set into two smaller
solution sets part1, part2.

• It’s up to the adversary to do the choose which part after splitting.
In other words, what the evil adversary does is:
let the updated solution set be the large one between part1 and part2.
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4 Yao’s Principle

Yao’s principle: the best randomized algorithm on the worst time complexity is
equivalent to the worst distribution for the best average algorithmic solution.

Thus, to establish a lower bound on the performance of randomized algorithms,
it suffices to find an appropriate distribution of difficult inputs and to prove that no
deterministic algorithm can perform well against that distribution.

Thus, to find a lower bound for a randomized sorting algorithm(based on compari-
son), we only need to find an appropriate distribution. In this distribution, the minimum
of every deterministic algorithm’s average time complexity is the lower bound. Since, we
proved that for any deterministic comparison-based sorting algorithm A, the average-case
number of comparisons is at least log2(n!) = nlogn. So, we can know that lower bound
for randomized sorting algorithm is also log2(n!) = nlogn. That is, for any randomized
sorting algorithm, there is an input for which the randomized algorithm take time at
least nlogn.

Remark.
Please let me know if there are any mistakes.
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