#### Collective Decision

Xiaotie Deng

AIMS Lab
Department of Computer Science,SJTU

October 19, 2016

Network Flow

2 Core: A Solution Concept in Cooperative Games

3 Social Choice

Network Flow

#### Network Flow Model

- A Directed Graph G = (N, A; s, t).
  - Graph with a source s and a sink t.
  - ② A flow is a collection of arcs such that if it goes in a node  $v \in N \{s, t\}$  , it will go out of the same v in the same number
- A flow is a maximum flow if the amount of flow going out of s is maximised.

### LP Formulation of Maximum Flow

• A Directed Graph G = (N, A; s, t).

$$\max \sum_{(s,i)\in A} x_{s,i}$$
s.t.  $\forall i \in A - \{s,t\}$   $\sum_{k} x_{k,i} = \sum_{t} x_{i,t}$  (1)
$$x \le 1 \qquad x \ge 0$$

 A flow is a maximum flow if the amount of flow going out of s is maximised.

## FORD-FULKERSON Algorithm for Network Flow

- A Directed Graph G = (N, A; s, t)
- initial flow x = 0.
- Loop
  - Construct Auxiliary Graph H(N, A')
    - $A' = \{e \in A : x(e) = 0, x(inverse(e)) = 1\}$ , where e' = (b, a) if e = (a, b).
  - Find a shortest path P from s to t in H. Exit if there is no such a path.
  - revise x:  $x(e) \leftarrow x(e) + 1$  if  $e \in P \cap A$  and x(e) = x(e) 1 if  $e \in P$  and  $inverse(e) \in A$ .
  - End of Loop



## Properties of Algorithm

- It terminates in no more than degree(s) loops.
- 2 It terminates with a minimum cut found.
- The solution is a maximum solution to LP (min cut is dual, LP=DLP).
- 4 It extends to the non-unit capacity case.
- Opening time algorithm for unit capacity networks.
- **1** Using LP, we can find the solution in polynomial time.
  - Perturb the objective function appropriately, the LP has a unique solution which is integer by the (exponential) network flow algorithm.

Outline
Network Flow
Core: A Solution Concept in Cooperative Games
Social Choice

Core: A Solution Concept in Cooperative Games

## An Example of Cooperative Games

- A graph of *n* agents G = (V, E, w) with |V| = n, |E| = m and  $w : E \to N$ .
- Values of Subsets  $v: 2^V \to R_+$ .
  - In this case,  $v(S) = sum_{e \in G[S]}w(e)$

## An Example of Cooperative Games

- Core of the game:  $x: V \to R_+$  such that
  - $x(N) = v(N)(=w(E)); \forall S \subseteq V : x(S) \ge v(S); x \ge 0.$
- Is there a member in Core?
  - Try  $x(i) = \frac{1}{2} \sum_{i \in e \in E} w(e)$  ?
- How to decide whether  $x: V \to Q_+$  is in Core?
- Difficulty: There are  $2^n$  subsets of V: |V| = n.

#### Existence of the Core

- Core of the game exists iff there is no negative cut
- Decide whether x : V → Q<sub>+</sub> is in Core can be done in polynomial time if there is no negative edge.
- Solution by maximum flow algorithm.
  - Node set of the new graph:  $V' = \{s, t\} \cup V \cup E$ .
  - Edge set of the new graph:
    - $\forall e = (i,j) \in E$ , create  $c(s,e) = v(e), c(e,i) = c(e,j) = +\infty$ .
    - $\forall i \in V$ , create c(i, t) = x(i).
- x is in core iff solution to the network flow from s to t has capacity v(V) = x(V).



Social Choice

#### Individual Values and Social Choice

- Underlying problem: There are a set C of candidates, and a set V of voters.
- Each voter  $v \in V$  has a permutation of C written as  $\prec_v$ .
- We are required to find a function f that takes the preference lists of all voters, returns a choice among the candidates.
- Output: a function  $f:(\pi_C)^{|V|} \to \pi_C$  as the social choice by the voters.
- Challenge: How to choose the candidate fairly?



#### Individual Values and Social Welfare

- Underlying problem: There are a set C of candidates, and a set V of voters.
- Each voter  $v \in V$  has a permutation of C written as  $\prec_v$ .
- We are required to find a function f that takes the preference lists of all voters, returns a premutation of the candidates as a social preference list.
- Output: a function  $f:(\pi_C)^{|V|} \to \pi_C$  as the social welfare by the voters.
- Challenge: How to define the fairness concept and find the solution?



## Arrow's Properties

- Unanimity:  $f(\prec, \prec, \cdots, \prec) = \prec$
- Non-dictatorship:
  - $d \in V$  is a dictator for the social welfare function f if  $f(\prec_d, \cdots) = \prec_d$  no matter what are the preference lists  $\prec_c$  for  $c \in V \{d\}$ .
- (IIA) Independence of Irrelevant Alternatives:
  - Let V is partitioned into  $V_{i,j}$  and  $V_{j,i}$  such that  $\forall v \in V_{i,j}$   $i <_v j$  and  $\forall u \in V_{j,i}$ ,  $i >_u j$ .
  - For any set of |V| preference lists,  $f(\prec_v: v \in V)$  that has the same set  $V_{i,j}$  and  $V_{j,i}$ , the outcome  $\prec$  is the same on the order of  $\{i,j\}$ .

### Arrow's Impossibility Theorem

- Any Social Welfare satisfying Unanimity and IIA is a dictatorship.
- Proof Outline
  - Pairwise Neutrality: Given  $a, b, c, d \in C$ , if  $\forall i, j \in V$   $b \prec_i a$  iff  $d \prec'_j c$ , then  $b \prec_{f()} a$  iff  $d \prec'_{f()} c$ .
  - Proof: We merge  $a, b, c, d \prec_i, \prec_i'$  into one social welfare problem under  $\prec_i''$  and assume  $b \prec a$ , and  $c \neq b$ .
    - Place c such that a ≺<sub>i</sub>" c and d ≺<sub>i</sub>" b. At the same time, maintain the relative relationship of a, b, and c, d.
    - $a \prec'' c$  and  $d \prec'' b$  by the unanimity rule.
    - By transitivity,  $d \prec'' b \prec'' a \prec'' c$ .
    - Since the relationship of c and d is the same in ≺'<sub>i</sub> as in ≺''<sub>i</sub> for all i, it follows that d ≺' c as well.



# Arrow's Impossibility Theorem-Continued

- Any Social Welfare satisfying Unanimity and IIA is a dictatorship.
- Proof Continued: Choose alternatives  $a \neq b$  Consider a sequence of profiles,  $\pi^i$ ,  $i = 0, 1, 2, \dots, n$ , such that
  - for the first i players,  $(j = 1, 2, \dots, i)$ ,  $b \prec_i^i a$
  - for the rest,  $j = i + 1, i + 2, \dots, n$ ,  $a \prec_j^i b$ .
- by Unanimity,  $a \prec^0 b$  and  $b \prec^n a$ .
- Let  $i^* = \min\{i : b \prec^i a\}$ , which will be shown to be the dictator.

## Arrow's Impossibility Theorem-Continued

- Let  $i^* = \min\{i : b \prec^i a\}$ , which will be shown to be the dictator.
- Given a profile of preferences of the players,  $(\prec_i)$  and the associate social preference  $\prec$ , where  $c \prec_{i^*} d$ , we should prove that  $c \prec d$ .
- Let  $e \notin \{c, d\}$ . Create another profile  $\prec'$  such that
  - if  $j < i^*$ 
    - $e \prec_i' c \prec_i' d$  if  $c \prec_j d$
    - $e \prec_j' d \prec_j' c$  if  $d \prec_j c$
  - if  $j = i^*$ 
    - $c \prec'_j e \prec'_j d$  if  $c \prec_j d$
    - $d \prec'_j e \prec'_j c$  if  $d \prec_j c$
  - if  $i^* < j$ 
    - $c \prec_i' d \prec_i' e \text{ if } c \prec_i d$
    - $d \prec_i' c \prec_i' e$  if  $d \prec_j c$



# Arrow's Impossibility Theorem-Concluded

- As e and c in  $\prec'$  have the same relationship as a and b in  $\pi^{i^*-1}$ , we have  $c \prec' e$  in  $\prec'$ .
- Similarly, e and d in ≺' have the same relationship as a and b in π<sup>i\*</sup>.
- We conclude  $c \prec' e \prec' d$ .
- Therefore,  $c \prec_{i^*} d$  implies the social decision  $c \prec d$ .