Collective Decision

Xiaotie Deng

AIMS Lab Department of Computer Science,SJTU

October 19, 2016

イロト イヨト イヨト イヨト

2 Core: A Solution Concept in Cooperative Games

イロト イヨト イヨト イヨト

Network Flow

・ロト ・回 ト ・ヨト ・ヨト

2

Network Flow Model

- A Directed Graph G = (N, A; s, t).
 - **1** Graph with a source *s* and a sink *t*.
 - 2 A flow is a collection of arcs such that if it goes in a node $v \in N \{s, t\}$, it will go out of the same v in the same number
- A flow is a maximum flow if the amount of flow going out of *s* is maximised.

LP Formulation of Maximum Flow

• A Directed Graph G = (N, A; s, t).

$$\begin{array}{ll} \max & \sum_{(s,i)\in A} x_{s,i} \\ s.t. & \forall i \in A - \{s,t\} & \sum_k x_{k,i} = \sum_t x_{i,t} \\ & x \leq 1 & x \geq 0 \end{array}$$
 (1)

• A flow is a maximum flow if the amount of flow going out of *s* is maximised.

FORD-FULKERSON Algorithm for Network Flow

- A Directed Graph G = (N, A; s, t)
- initial flow x = 0.
- Loop
 - Construct Auxiliary Graph H(N, A')
 - $A' = \{e \in A : x(e) = 0, x(inverse(e)) = 1\}$, where e' = (b, a) if e = (a, b).
 - Find a shortest path *P* from *s* to *t* in *H*. Exit if there is no such a path.
 - revise $x: x(e) \leftarrow x(e) + 1$ if $e \in P \cap A$ and x(e) = x(e) 1 if $e \in P$ and $inverse(e) \in A$.

・ロン ・回と ・ヨン ・ヨン

• End of Loop

Properties of Algorithm

- **1** It terminates in no more than degree(s) loops.
- 2 It terminates with a minimum cut found.
- The solution is a maximum solution to LP (min cut is dual, LP=DLP).
- It extends to the non-unit capacity case.
- **o** Polynomial time algorithm for unit capacity networks.
- **1** Using LP, we can find the solution in polynomial time.
 - Perturb the objective function appropriately, the LP has a unique solution which is integer by the (exponential) network flow algorithm.

- 4 周 ト - 4 日 ト - 4 日 ト

Core: A Solution Concept in Cooperative Games

イロン 不同と 不同と 不同と

An Example of Cooperative Games

- A graph of n agents G = (V, E, w) with |V| = n, |E| = mand $w : E \to N$.
- Values of Subsets $v: 2^V \to R_+$.
 - In this case, $v(S) = sum_{e \in G[S]}w(e)$

イロト イヨト イヨト イヨト

An Example of Cooperative Games

- Core of the game: $x: V \to R_+$ such that
 - $x(N) = v(N)(=w(E)); \forall S \subseteq V : x(S) \ge v(S); x \ge 0.$
- Is there a member in Core?

• Try
$$x(i) = \frac{1}{2} \sum_{i \in e \in E} w(e)$$
 ?

- How to decide whether $x: V \rightarrow Q_+$ is in Core?
- Difficulty: There are 2^n subsets of V : |V| = n.

- **(())) (()))**

Existence of the Core

- Core of the game exists iff there is no negative cut
- Decide whether x : V → Q₊ is in Core can be done in polynomial time if there is no negative edge.
- Solution by maximum flow algorithm.
 - Node set of the new graph: $V' = \{s, t\} \cup V \cup E$.
 - Edge set of the new graph:
 - $\forall e = (i,j) \in E$, create $c(s,e) = v(e), c(e,i) = c(e,j) = +\infty$.

イロン イヨン イヨン イヨン

•
$$\forall i \in V$$
, create $c(i, t) = x(i)$.

• x is in core iff solution to the network flow from s to t has capacity v(V) = x(V).

Social Choice

・ロト ・回 ト ・ヨト ・ヨト

2

Individual Values and Social Choice

- Underlying problem: There are a set *C* of candidates, and a set *V* of voters.
- Each voter $v \in V$ has a permutation of C written as \prec_v .
- We are required to find a function *f* that takes the preference lists of all voters, returns a choice among the candidates.
- Output: a function $f : (\pi_C)^{|V|} \to \pi_C$ as the social choice by the voters.
- Challenge: How to choose the candidate fairly?

Individual Values and Social Welfare

- Underlying problem: There are a set *C* of candidates, and a set *V* of voters.
- Each voter $v \in V$ has a permutation of C written as \prec_v .
- We are required to find a function *f* that takes the preference lists of all voters, returns a premutation of the candidates as a social preference list.
- Output: a function $f : (\pi_C)^{|V|} \to \pi_C$ as the social welfare by the voters.
- Challenge: How to define the fairness concept and find the solution?

イロト イヨト イヨト イヨト

Arrow's Properties

- Unanimity: $f(\prec,\prec,\cdots,\prec) = \prec$
- Non-dictatorship:
 - $d \in V$ is a dictator for the social welfare function f if $f(\prec_d, \cdots) = \prec_d$ no matter what are the preference lists \prec_c for $c \in V \{d\}$.
- (IIA) Independence of Irrelevant Alternatives:
 - Let V is partitioned into $V_{i,j}$ and $V_{j,i}$ such that $\forall v \in V_{i,j}$ $i <_v j$ and $\forall u \in V_{j,i}$, $i >_u j$.
 - For any set of |V| preference lists, f(≺_v: v ∈ V) that has the same set V_{i,j} and V_{j,i}, the outcome ≺ is the same on the order of {i, j}.

・ロン ・回 と ・ ヨ と ・ ヨ と

Arrow's Impossibility Theorem

- Any Social Welfare satisfying Unanimity and IIA is a dictatorship.
- Proof Outline
 - Pairwise Neutrality: Given a, b, c, d ∈ C, if ∀i, j ∈ V b ≺_i a iff d ≺'_j c, then b ≺_{f()} a iff d ≺'_{f()} c.
 - Proof: We merge $a, b, c, d \prec_i, \prec'_i$ into one social welfare problem under \prec''_i and assume $b \prec a$, and $c \neq b$.
 - Place c such that a ≺''_i c and d ≺''_i b. At the same time, maintain the relative relationship of a, b, and c, d.
 - $a \prec'' c$ and $d \prec'' b$ by the unanimity rule.
 - By transitivity, $d \prec'' b \prec'' a \prec'' c$.
 - Since the relationship of c and d is the same in ≺'_i as in ≺''_i for all i, it follows that d ≺' c as well.

イロト イヨト イヨト イヨト

Arrow's Impossibility Theorem-Continued

- Any Social Welfare satisfying Unanimity and IIA is a dictatorship.
- Proof Continued: Choose alternatives a ≠ b Consider a sequence of profiles, πⁱ, i = 0, 1, 2, · · · , n, such that
 - for the first *i* players, $(j = 1, 2, \dots, i)$, $b \prec_i^i a$
 - for the rest, $j = i + 1, i + 2, \cdots, n$, $a \prec_i^i b$.
- by Unanimity, $a \prec^0 b$ and $b \prec^n a$.
- Let i^{*} = min{i : b ≺ⁱ a}, which will be shown to be the dictator.

(4月) イヨト イヨト

Arrow's Impossibility Theorem–Continued

- Let i^{*} = min{i : b ≺ⁱ a}, which will be shown to be the dictator.
- Given a profile of preferences of the players, (\prec_i) and the associate social preference \prec , where $c \prec_{i^*} d$, we should prove that $c \prec d$.

Arrow's Impossibility Theorem-Concluded

- As e and c in \prec' have the same relationship as a and b in π^{i^*-1} , we have $c \prec' e$ in \prec' .
- Similarly, e and d in ≺' have the same relationship as a and b in π^{i*}.
- We conclude $c \prec' e \prec' d$.
- Therefore, $c \prec_{i^*} d$ implies the social decision $c \prec d$.